Tourists
题目大意
\(n\) 个 \(m\) 条边的无向图,每个点有点权 \(w_i\) , \(q\) 次询问,每次修改第 \(a\) 个点的点权为 \(w\) ,或者查询 \(a\) 到 \(b\) 所有路径中,最小的点权
数据范围
\(1 \le n,m,q \le 10^5, 1 \le w_i \le 10^9\)
时空限制
2s,256MB
分析
对于这种在无向图上查询路径信息的题,一般利用圆方树将其转为树上问题
对于一个方点,维护点双中最小的点权,但是如果这样,每修改一次就需要修改所有与它相邻的节点。
对此我们有一个经典方法,对于方点维护除了环顶之外的信息,在圆方树中就相当于方点维护所有它儿子的信息,那么我们修改时只需要修改它的父亲,查询的时候如果 \(lca\) 为方点,那么还需要加上它的父亲的信息(因为父亲也在此点双中)
Code
#include#include #include #include #include using namespace std;template void read(T & x){ x = 0; int f = 1, ch = getchar(); while(ch < '0' || ch > '9') { if(ch == '-') f = -1; ch = getchar(); } while(ch >= '0' && ch <= '9') { x = x * 10 - '0' + ch; ch = getchar(); } x *= f;}#define lson u << 1, l, mid#define rson u << 1 | 1, mid + 1, rconst int inf = 1000000000;const int maxn = 100000 + 5;const int maxm = 100000 + 5;const int maxe = maxm * 2;const int maxnode = maxn * 2;int n, m, q;int val[maxnode];struct edge{ int to, nex; edge(int to = 0, int nex = 0) : to(to), nex(nex) {}} g[maxe];int head[maxn];int ecnt;vector adj[maxnode];inline void addedge(int u, int v){ g[ecnt] = edge(v, head[u]), head[u] = ecnt++; g[ecnt] = edge(u, head[v]), head[v] = ecnt++;}inline void adde(int u, int v){ adj[u].push_back(v); adj[v].push_back(u);}int dfc, dfn[maxn], low[maxn];int top, sta[maxn];int bcnt;multiset bccval[maxn];void tarjan(int u, int fa){ dfn[u] = low[u] = ++dfc; sta[++top] = u; for(int i = head[u]; ~ i; i = g[i].nex) { int v = g[i].to; if(v != fa) { if(!dfn[v]) { tarjan(v, u); low[u] = min(low[u], low[v]); if(low[v] >= dfn[u]) { int now = n + (++bcnt); adde(now, u); while(true) { int x = sta[top--]; bccval[bcnt].insert(val[x]); adde(now, x); if(x == v) break; } val[now] = * bccval[bcnt].begin(); } } else low[u] = min(low[u], dfn[v]); } }}struct segment_tree{ int mn[maxnode << 2]; inline void pushup(int u) { mn[u] = min(mn[u << 1], mn[u << 1 | 1]); } void build(int u, int l, int r) { if(l == r) { mn[u] = val[ver[l]]; return; } int mid = (l + r) >> 1; build(lson), build(rson); pushup(u); } void update(int u, int l, int r, int qp) { if(l == r) { mn[u] = val[ver[l]]; return; } int mid = (l + r) >> 1; if(qp <= mid) update(lson, qp); else update(rson, qp); pushup(u); } int query(int u, int l, int r, int ql, int qr) { if(l == ql && r == qr) return mn[u]; int mid = (l + r) >> 1; if(qr <= mid) return query(lson, ql, qr); else if(ql > mid) return query(rson, ql, qr); else { int lv = query(lson, ql, mid); int rv = query(rson, mid + 1, qr); return min(lv, rv); } } int dep[maxnode], anc[maxnode], siz[maxnode], son[maxnode]; int dfn[maxnode], top[maxnode], ver[maxnode], dfc; void dfs1(int u) { siz[u] = 1; for(unsigned int i = 0; i < adj[u].size(); ++i) { int v = adj[u][i]; if(v != anc[u]) { dep[v] = dep[u] + 1; anc[v] = u; dfs1(v); siz[u] += siz[v]; if(siz[son[u]] <= siz[v]) son[u] = v; } } } void dfs2(int u, int chain) { top[u] = chain; dfn[u] = ++dfc; ver[dfc] = u; if(son[u]) { dfs2(son[u], chain); } for(unsigned int i = 0; i < adj[u].size(); ++i) { int v = adj[u][i]; if(v != anc[u] && v != son[u]) { dfs2(v, v); } } } void init() { dfs1(1); dfs2(1, 1); build(1, 1, n + bcnt); } void update(int u, int x) { int v = anc[u]; if(v) bccval[v - n].erase(bccval[v - n].find(val[u])); val[u] = x; if(v) bccval[v - n].insert(val[u]); if(v) val[v] = * bccval[v - n].begin(); update(1, 1, n + bcnt, dfn[u]); if(v) update(1, 1, n + bcnt, dfn[v]); } int query(int u, int v) { int re = inf; while(top[u] != top[v]) { if(dep[top[u]] > dep[top[v]]) swap(u, v); re = min(re, query(1, 1, n + bcnt, dfn[top[v]], dfn[v])); v = anc[top[v]]; } if(dep[u] > dep[v]) swap(u, v); re = min(re, query(1, 1, n + bcnt, dfn[u], dfn[v])); if(u > n) { re = min(re, val[anc[u]]); } return re; }} seg;void init(){ tarjan(1, 0); seg.init();}int main(){ // freopen("testdata.in", "r", stdin); read(n), read(m), read(q); for(int i = 1; i <= n; ++i) { read(val[i]); } memset(head, -1, sizeof(head)); for(int i = 1; i <= m; ++i) { int u, v; read(u), read(v); addedge(u, v); } init(); for(int i = 1; i <= q; ++i) { char op[5]; scanf("%s", op); if(op[0] == 'C') { int a, w; read(a), read(w); seg.update(a, w); } else { int a, b; read(a), read(b); printf("%d\n", seg.query(a, b)); } } return 0;}